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Abstract 

 

Support Vector Machines are popular because of their promising performance in 
classification and prediction. Experiments on a collection of benchmark data sets demonstrate 

the efficiency and effectiveness of the SVM algorithm. The success of SVM lies in suitable 
kernel design and selection of its parameters. There is no formal way to decide, which kernel 

function is suited to a class of classifier problem. While most commonly used kernels are 
Radial Basis Function (RBF), polynomial, spline, sigmoid etc, we have explored an un-
conventional kernel function, namely the Laplacian kernel. Contrary to the usual thinking that 

Gaussian RBF is well suited for experimentation, we found that the Laplacian kernel behaves 
better than the conventional RBF for some data sets though not always.  This will make 

calculations simpler and reduce the time required to implement the SVM problem.  
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I.  INTRODUCTION 

 Support Vector learning is based on 

simple ideas which originated in statistical 

learning theory (Vapnik [1]). The 

simplicity comes from the fact that 

Support Vector Machines (SVMs) apply a 

simple linear method to the data but in a 

high-dimensional feature space which is 

non- linearly related to the input space. 

Moreover, even though we can think of 

SVMs as a linear algorithm in a high-

dimensional space, in practice, it does not 

involve any computations in that higher 

dimensional space. This simplicity 

combined with state of the art performance 

on many learning problems (classification, 

regression, and novelty detection) has 

contributed to the popularity of the SVM. 

Although the training time of even the 

fastest SVMs can be extremely slow, they 

are highly accurate, owing to their ability 

to model complex nonlinear decision 

boundaries. They are much less prone to 

over fitting than other methods. The 

support vectors found also provide a 

compact description of the learned model. 
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SVMs can be used for prediction as well as 

classification. They have been applied to a 

number of areas, such as geo and 

environmental sciences, medical sciences 

and biological sciences. SVM domain 

relates to real world problems including 

handwritten digit recognition, object 

recognition, and speaker identification, as 

well as benchmark time-series prediction 

tests.  

SVMs use an implicit mapping  of 

the input data into a high-dimensional 

feature space defined by a kernel function, 

i.e., a function returning the inner product 

 between the images of two 

data points  in the feature space. The 

learning then takes place in the feature 

space. This is often referred to as the 

“kernel trick” (Sch¨olkopf and Smola [2]). 

More precisely, if a projection  is 

used, the dot product  can be 

represented by a kernel function  given by 

 which is 

computationally simpler than explicitly 

projecting x and x‟ into the feature space 

H. One interesting property of support 

vector machines and other kernel-based 

systems is that, once a valid kernel function 

has been selected, one can practically work 

in spaces of any dimension without any 

significant additional computational cost, 

since feature mapping is never effectively 

performed. In fact, one does not even need 

to know which features are being used.  

Another advantage of SVMs and 

kernel methods is that one can design and 

use a kernel for a particular problem that 

could be applied directly to the data 

without the need for a feature extraction 

process. This is particularly important in 

problems where a lot of structure of the 

data is lost by the feature extraction 

process (e.g., text processing). 

The benefit of using a support 

vector machine to extract complex patterns 

from the data is that it is not necessary to 

have a prior understanding of the behavior 

of the data. A support vector machine is 

able to analyze the data and extract its own 

insights and relationships.  

One of the best features of support 

vector machines is that they are able to deal 

with errors and noise in the data very well. 

They are often able to see the underlying 

pattern within the data and filter out data 

outliers and other complexities.  

The success of classification of data 

using a support vector machine depends 

largely on the choice of the kernel. When 

training an SVM the practitioner needs to 

make a number of decisions on how to 

process the data, what kernel to use and 
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setting the parameters of the SVM and the 

kernel.The polynomial kernels and the 

Gaussian RBF are the most popular kernels  

and they are widely used in the literature to 

classify data and often a comparision of the 

results using various kernels is made 

showing the effectiveness and suitability of 

a kernel to a given data set (Srivastava and 

Bhambhu [3], Prajapati and Patle[4], 

Sangeetha and Kalpana [5], Ben Ayed 

Mezghani, Zribi Boujelbene, and Ellouze 

[6]). Efforts are often made in literature to 

device or construct new kernels to suit 

specific large data sets (Boolchandani and 

Vineet Sahula [7],  Ayat  et al.,[8] ).  Such 

attempts are made in literature when the 

well known kernels are unable to classify a 

specific dataset of a real world problem 

efficiently.  

Before describing our problem, it is 

necessary to describe some properties of 

the Gaussian RBF kernel. Normally a 

Gaussian will be used as the RBF kernel. 

The output of the kernel is dependent on 

the Euclidean distance of x from  (one of 

these will be the support vector and the 

other will be the testing data point). The 

support vector will be the centre of the 

RBF and  will determine the area of 

influence this support vector has over the 

data space. The Gaussian RBF kernel is  

. A smaller 

value of  will give a smoother decision 

surface and more regular decision 

boundary. This is because an RBF  with 

small  will allow a support vector to have 

a strong influence over a larger area. This 

property is less pronounced in the case of 

the Laplacian Kernel

. Intuitively, 

the gamma parameter defines how far the 

influence of a single training example 

reaches, with low values meaning „far‟ and 

high values meaning „close‟. Similar 

results are true for the Laplacian kernel 

also though the area of influence differs.  

II. Related Work 

The purpose of this paper is to 

introduce the Laplacian kernel which is 

also known as the Exponential kernel.  In 

the Gaussian kernel the square of the 

distance between the vectors  and  is 

considered in the exponential whereas here 

we take the distance alone. This kernel is 

also well known kernel but least attention 

is paid in using this kernel to train data in a 

Support Vector machine. The kernel is 

mathematically simpler and when used in a 

SVM it can reduce the complexity of 

algorithm. It is the purpose of this paper to 

show that the exponential kernel produces 
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very good classification accuracy and 

indeed it will serve better purpose than the 

well known Gaussian kernel for certain 

data sets. The secret behind this success is 

that the Gaussian kernel very slowly 

decreases from 1 whereas the exponential 

kernel is faster. Similarly, the Gaussian 

kernel falls to zero very fast whereas the 

exponential kernel is slower in reaching 

zero compared to the Gaussian kernel. This 

avoids clustering of points at 1 and 0 and 

disperses points wider enabling smooth 

separation in the feature space. Also much 

depends on parameter . Motivated by these 

ideas we consider the problem of 

classification of data sets using a Support 

Vector Machine. We use the exponential 

kernel. The data sets considered are 

described during the discussion. Now we 

present the quadratic programming 

problem in brief.  

III. SVM CLASSIFIERS (Methodology) 

A.  Linear Classifiers 

Support vector machines are an exa

mple of a linear two-class classifier. The 

data for two class learning problem 

consists of objects labeled with one of two 

labels corresponnding to the two classes; 

for convenience we assume the labels are 

+1 (positive examples) or -1 (negative 

examples). In what follows boldface x 

denotes a vector with components . The 

notation  will denote the i th vector in a 

data set  where  

is the label associated with  The objects 

 are called patterns or examples. We 

assume that the examples belong to some 

set X. Initially we assume that the 

examples are vectors, but once we 

introduce kernels, this assumption will be 

relaxed at which point they could be any 

continuous or discrete objects.  

A key concept required for defining

 a linear classifier is the dot product betwe

en two vectors, also referred to as an inner 

product or scalar product defined as  

. A linear classifier is 

based on a linear discriminant function of 

the form  

                                                                                 

(1)       

The vector w 

is known as the weight vector, and b is 

called the bias. Consider the case  

first. The set of points x such that 

  are all points that are perpendicular to 

w and go through the origin – a line in two 

dimensions, a plane in three dimensions, 

and more  generally a hyperplane.  The 

bias b translates the hyperplane away from 

the origin. The  hyperplane     



INTERNATIO NAL JOURNAL O F MERGING TECHNOLOGY AND    ADVANCED RESEARCH IN COMPUTING  

                                                                                                           ISSN: 2320-1363 

  5 
                                                                        

 

                                                                                           

(2) 

divides the space into two. 

The sign of the discriminant function  

in equation (1) denotes the side of the 

hyperplane a point is on. The boundary 

between regions classified as positive and 

negative is called the decision boundary of 

the classifier. The decision boundary 

defined by a hyperplane is said to be linear 

because it is linear in the input ( c.f. 

Equation 1).  A classifier with a linear 

decision boundary is called a linear 

classifier.  Conversely, when the decisioin 

boundary of a classifier depends on the 

data in a non- linear way the classifier is 

said to be non- linear.   

      

B.  From linear to non-linear classifiers 

The machinery of linear classifiers 

can be extended to generate non- linear 

decision boundaries. The naïve way of 

making a non- linear classifier out of linear 

classifier is to map our data from  the input 

space X to a feature space F using a non-

linear function  .In the feature 

space F the discriminant function is   

                                                                                                     

(3)  

Kernel methods avoid the step of 

explicitly mapping the data to a higher 

dimensional feature space. Suppose the 

weight vector can be expressed as a linear 

combination of the training examples, that 

is,  . Then, 

. In the feature space F, 

this expression takes the form 

. The 

representation in terms of the variables  

is known as the dual representation of the 

decision boundary. As indicated above, the 

feature space F may be high dimensional, 

making this trick impractical  unless the 

kernel function  is defined as 

 - a dot product – 

that can be computed efficiently.  In terms 

of the kernel function, the discriminant 

function is            

We saw that a linear decision 

boundary can be “kernalized”, i.e., its 

dependence on the data is only through dot 

product.  In  order for this to be useful, the 

training algorithms need to be kernalized 

as well. It turns out that a large number of 

machine learning algorithms can be 

expressed using kernels – including ridge 

regression, the perceptron algorithm and 

SVMs [2,9]. 

We use the term linearly seperable 

to denote data for which there exists a 

linear decision bounday that seperates 

positive from negative examples. Initially 
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we assume linearly seperable data and 

later indicate how to handle data which is 

not linearly seperable.  

      We define the notion of a margin. 

For a given hyperplane, we denote by  

and  the closest points to the hyperplane 

among the positive and negative example 

points respectively. The norm of the vector 

w denoted by   is its length and is 

given by .  Let H be the optimal 

hyperplane – for which the margin is 

maximum.  Let  and be the two 

hyperplanes equidistant on either side 

defining the margin. We may call them as 

“sides” defining the margin.Then   and 

 lie on  and  and hence we have  

 and  . The 

points on the planes   and  are 

support vectors. From geometric 

considerations, the distance between the 

planes   and  is given by 

1/║w║. Therefore the distance 

between  and  is 2/   

       We have the concept of a margin 

and now we can formulate the maximum 

margin  classifier. We will first define the 

hard margin SVM, applicable to a linearly 

seperable data set, and then modify it to 

handle non-seperable data. The maximum 

classifier is the discriminant function that 

maximizes the geometric margin  

which is equivalent to 

minimizing . This leads to the 

following constrained optimization 

problem. 

     subject to: 

              

                    

(4)      

The constraints in this formulation 

ensure that the maximum margin classifier 

classifies each example correctly, which is 

possible since we assumed that the data is 

linearly seperable.  In practice, data is often 

not linearly seperable; and even if it is, a 

greater margin can be achieved by allowing 

the classifier to misclassify some points. 

To allow errors we replace the inequality 

constraintes in Eq. (4) with 

  where   

are slack variables that allow an example to  

be in the margin ( , also called a 

margin error) or to be misclassified 

. Since an example is misclassified 

if the value of its slack variable is greater 

than 1,   is a bound on the number 

misclassified examples. Our object of 

maximizing the margin i.e., minimizing 

will be augmented with a term 

 to penalize misclassification and 
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margin errors. The optimization problem 

now becomes 

 

  subject 

to 

           

                              

(5)      

The constant C>0 sets the relative 

importance of maximizing the margin and 

minimizing the amount of slack. This 

formulation is called the soft margin SVM, 

and was introduced by Cortes and Vapnik 

(10). Using the method of Lagrange 

multipliers, we can obtain the dual 

formulation which is expressed in terms of 

variables [10, 2, 9].             

 

    

Subject to                                                                           

(6)   

 The dual formulation leads to an 

expansion of the weight vector in terms of 

the input examples: .  The 

examples  for which  are those 

points that are on the margin, or within the 

margin when a soft margin SVM is used. 

These are the so called support vectors.  

The expansion in terms of the support 

vectors is often sparse, and the level of 

sparsity (fraction of the data serving as 

support vectors) is an upper bound on the 

error rate of the classifier[2].    

The dual formulation of the SVM o

ptimization problem depends on the data 

only through the dot products. The dot 

product can therefore be replaced with a 

nonlinear kernel function, thereby 

performing large margin seperation in the 

feature space of the kernel. The SVM 

optimization problem was traditionally 

solved in the dual formulation, and only 

recently it was shown that the primal  

formulation, Equation 

(5) can lead to efficient kernel-

based learning [11].   

The ability of a machine to learn 

will depend on the mapping function or in 

other words on the kernel function. So, the 

choice of kernel function and its 

parameters will play an important role in 

the generalization ability of a machine. The 

other important component of SVM is the 

support vectors. On these vectors, the 

placement of separating hyperplane 

depends upon. It is preferable that the 

number of support vectors should be less to 

enable misclassification.  

IV. RESULTS AND DISCUSSION 

Support Vector Machines require 

parameter tuning in order to improve the 
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accuracy of their test results. To do this 

parameter tuning, 5-fold cross validation 

was performed for each of kernels in 

SVMLib‟s Matlab implementation on the 

training data. A logarithmic”grid search” 

method was performed to find the best 

choices for C and ; those that had the best 

average cross-validation accuracy are the 

ones chosen for use on the test data.  

We will use the following data sets 

originating from the UCI machine learning 

database. The experiments were done using 

three data sets. We have selected the data 

sets ranging from smaller number of 

instances to larger numbers. Binary SVM 

has been used in the experiments. The three 

data sets used were irish, heart, and 

diabetes. Irish data set has 148 samples and 

each sample has 14 attributes. Heart data 

set has 270 instances with 14 attributes. 

The diabetic data set has 768 samples each 

having 9 attributes.  

Table 1 gives the results obtained 

for the cases of the three data sets for 

various values of the parameter  which 

appears in the kernels.  

 

The results show the classification 

accuracies. It is already remarked that the 

exponential kernel would reduce the 

clustering of the points at the points 0 and 

1. Thus we expect a quick decrease in the 

neighborhood of zero and a moderate 

decrease toward infinity. This forces the 

Da
ta 
set 

IRISH HEART DIBETIC 

γ 

Va

lue 

RB

F 

LAP

LAC

E 

RB

F 

LAP

LAC

E 

RB

F 

LAP

LAC

E 

0.0

01 

96.6

667 

68.66

67 

65.5

556 

55.55

56 

72.7

865 

75.15

92 

0.0

05 

92.6

667 

68.66

67 

60.3

704 

55.55

56 

69.2

708 

74.94

69 

0.0

1 
94 

68.66

67 

55.5

556 

55.55

56 

65.8

854 

75.15

92 

0.0

5 

95.3

333 

98.66

67 

55.5

556 

58.51

85 

65.1

042 

75.37

15 

0.1 96 78 
60.3

212 

55.55

56 

65.1

042 

75.15

92 

0.5 
96.6

667 

98.66

67 

55.5

556 

58.51

85 

65.1

042 

73.46

07 

1.0 94 
99.33

33 

55.5

556 

75.92

59 

65.1

042 

81.81

82 

5.0 
95.3

33 
100 

55.5

444 

83.33

33 

65.1

066 

80.39

22 

10 
92.6

667 
100 

55.5

556 

83.70

37 

65.1

042 

75.79

62 

20 
85.3

333 
100 

55.5

556 

84.07

41 

65.1

042 

75.79

62 

10

0 

56.6

67 
100 

55.5

556 

83.70

37 

65.1

042 

75.79

62 
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images of the original points to be linearly 

separable in the augmented space. The 

parameter  varies over a wide range from 

very small values to large values (see 

table) showing the behavior of the kernel 

functions in effectively tackling the 

separation of points in the feature space.  

In the case of heart data base we 

have 270 instance and 14 attributes, we 

can find that higher values of  are able 

to accomplish the job of classification very 

well. We find that the classification 

efficiency will go to 83 or 84 for larger 

values of  whereas for smaller values of 

 both the kernels produce similar values 

of round 55 to 60. The diabetic data set 

consists of 768 examples and 9 attributes. 

The exponential kernel uniformly gives 

better results at all values of the parameter  

. The best accuracy is reached when  

=1.  The Irish data set has 148 instances 

and 14 attributes. Both the kernels give 

very good results but the Exponential 

kernel is highly successful scoring an 

accuracy of 100 for larger values of  .  

V. CONCLUSIONS 

While dealing with training data on 

a support vector machine, we felt that the 

sparseness of the data inside the original 

space can vary widely depending on its 

distribution and we believe that kernels 

preserving the whole data closeness 

information while still penalizing the far 

neighborhood are more reliable, especially 

in case of sparse data. And simpler kernels 

can not the underestimated to do this job. 

We proposed and experimented with a non 

conventional kernel, namely the Laplace 

kernel that allows such a behavior by 

ensuring at once a quick decreasing from 

zero and a slow decrease toward infinity 

(compared to RBF). This tends to 

uncorrelated (disperse) as much as 

possible very close points into the 

augmented space. Hybrid kernels can be 

created using systematic methodology and 

optimization technique only after ensuring 

that the conventional and simpler kernels 

do not work on a data set.  
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